Influence of the Tumor Microenvironment on Prostate Cellular Behavior

Clayton Yates, PhD
Tuskegee University
Center for Cancer Research
Discovery of EMT

First observed and defined by Elizabeth Hay in late 1960’s at Harvard

First associated with early stages of embryonic development.

Process is reversible

EMT ↔ MET ↔ EMT
EMT

- Loss of E-cadherin
 - Increase in translational repressors (Snail or Zeb1)
 - Methylation promoter
- Secretion of proteolytic enzymes
- Gain of mesenchymal proteins
- Fibroblastic morphology
- Increased cell motility and invasion
Factors for metastatic progression

EMT \rightarrow Dissemination \rightarrow Micrometastasis \rightarrow M-E-T

- Reversible (epigenetic)
- Environmental factors
- Location
 - bone marrow
 - liver (hepatocytes)
Molecular Events of Metastasis

Nature Reviews Cancer, 2002
EGFR Modulates DU145 E-Cadherin Levels

Yates et al 2005
E-cadherin/EGFR in Co-culture

Figure 1

A.

<table>
<thead>
<tr>
<th></th>
<th>DU-145</th>
<th>PC-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-cadherin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytokeratin 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.

<table>
<thead>
<tr>
<th></th>
<th>DU-145</th>
<th>PC-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cadherin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green = Hepatocytes
Red = DU-145 prostate cancer
Blue = Anti-E-cadherin or EGFR staining
Human PCa Mets to Liver

Top row = IHC with anti-E-cadherin, anti-β-catenin
Bottom row = anti-p120, anti-p120

E-cadherin

EGFR

p120

B-catenin

p-EGFR 1068
Reepithelialization of PCa Mets in the Liver

Cytokeratin 18

Vimentin
ARCaP: Classic EMT Model

A. ARCaPE → ARCaPM

B. RT-PCR

<table>
<thead>
<tr>
<th></th>
<th>ARCaP</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cadherin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vimentin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-cadherin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Western blot

<table>
<thead>
<tr>
<th></th>
<th>ARCaP</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cadherin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vimentin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. IHC E-cadherin

![IHC E-cadherin](image)
Prostate Cancer in Presence of Bone Stromal Cells

Josson et al 2010

cadherin and N-cadherin at Day 1 and 4
A total of 1,220 prostate TMA samples were analyzed. High (normal) E-cadherin expression was seen in 87% of 757 benign, 80% of 41 high-grade PIN, 82% of 325 prostate carcinoma and 90% of hormone-refractory prostate carcinoma TMA samples.
Clinical implications of Repithelialization during Metastatic Seeding of Tumor Microenvironment
Metastatic Seeding within Tumor Microenvironment

A. GFP- HS-27a

RFP-ARCaP_E

RFP-ARCaP_M

B. Relative Growth (Relative Fluorescent Unit)

Days

C. Clonogenic Survival

Josson et al 2010
Prostate/Bone stromal cells decrease Radiation Sensitivity

Josson et al 2010

A.

B.

C.
Blocking Cell-Cell Adhesion Increases Radiation Sensitivity
Blocking Cell-Cell Adhesion Increases Radiation Sensitivity
Establishment and Characterization of non-malignant and malignant cell lines from African American Prostate Cancer Patient.
African American Prostate Cell lines.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Age</th>
<th>Race</th>
<th>Morphology</th>
<th>Clinical Stage</th>
<th>Tumor Grade</th>
<th>Gleason Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC77N</td>
<td>62</td>
<td>AA</td>
<td>Epithelial</td>
<td>Non-malignant</td>
<td>NA<sup>c</sup></td>
<td>NA<sup>c</sup></td>
</tr>
<tr>
<td>RC44N</td>
<td>59</td>
<td>AA</td>
<td>Epithelial</td>
<td>Non-malignant</td>
<td>NA<sup>c</sup></td>
<td>NA<sup>c</sup></td>
</tr>
<tr>
<td>RC77T</td>
<td>62</td>
<td>AA</td>
<td>Epithelial</td>
<td>Primary Adenocarcinoma</td>
<td>Poorly Differentiated</td>
<td>7</td>
</tr>
<tr>
<td>RC44T</td>
<td>59</td>
<td>AA</td>
<td>Epithelial</td>
<td>Primary Adenocarcinoma</td>
<td>Poorly Differentiated</td>
<td>7</td>
</tr>
<tr>
<td>MDA-2Pca-2b</td>
<td>63</td>
<td>AA</td>
<td>Epithelial</td>
<td>Adenocarcinoma</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PrEC</td>
<td>59</td>
<td>White</td>
<td>Epithelial</td>
<td>Non-malignant</td>
<td>NA<sup>c</sup></td>
<td>NA<sup>c</sup></td>
</tr>
<tr>
<td>RC-92a</td>
<td>57</td>
<td>White</td>
<td>Epithelial</td>
<td>Primary Adenocarcinoma</td>
<td>Well-Differentiated</td>
<td>3 + 3</td>
</tr>
<tr>
<td>PC-3</td>
<td>62</td>
<td>White</td>
<td>Epithelial</td>
<td>Metastatic Adenocarcinoma</td>
<td>Undifferentiated</td>
<td>NA<sup>c</sup></td>
</tr>
</tbody>
</table>

AA = African American
NA = not applicable
NA^c = Not available

Theodore et al 2010
Properties of Newly Established Cell lines

Table 1. Properties of RC-77T/E and RC-77N/E cell lines

<table>
<thead>
<tr>
<th></th>
<th>RC-77T/E</th>
<th>RC-77N/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Span</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>Gene Expression by RT-PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NKX3.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cytokeratin 8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>AR</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>p16</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PSA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GAPDH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3D-organoid formation</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Tumorigenicity in SCID mice</td>
<td>3/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

Theodore et al 2010
Figure 2

A.

B.

C.

i.

ii.

iii.

Theodore et al. 2010
Acknowledgements

Major Collaborators

University of Pittsburgh
- Alan Wells
- Donna Beer Stolz
- Glenn Papworth
- Christopher Shepard
- Simmon Watkins

MIT
- Linda Griffith
- Ajit Dash

Cedars-Sani Medical Center
- Leland Chung
- Hayien Zhau
- Sajni Josson

Tuskegee University
- Tim Turner

Georgia State University
- Ritu Aneja