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Background: Rapid development of Metabolomics profiling has generated high quality datasets 
which capture various downstream biological states, processes and fluctuations of cell metabolism. 
The study of Metabolomics not only opened new frontiers in molecular interaction and pathway 
analysis, but also promise enormous potential of revealing novel biological inferences when 
integrating with other high dimensional ‘omics’ data, such as Proteomics and Transcriptomics. The 
NCI-60 data, commissioned by NCI and publicly available online, provides a suite of comprehensive 
measurement on mRNA, metabolite, protein and epigenetics over 9 different classes of cancer cell 
lines. This dataset is ideal material for mining underlying relationships between ‘omics’ datasets.  

Data Screening and Sample Classification: We performed two-way data screening to 
produce a confident Metabolomics dataset for subsequent correlation analysis. The first way is 
probe-wise screening: when cross validating NCI-60 Metabolomics dataset with a reference copy, we 
discovered that this dataset contains approximately 30% imputed missing values. Also this dataset 
contains more outliers than the corresponding microarray data. To create a subset of ‘cleaner’ data, 
we first removed the metabolite profiles with less than 20 valid values, then filtered out profiles which 
had Pearson Correlation Coefficient less than 0.7 between the NCI-60 data and our reference data. 
This yields 220 metabolite profiles. The second way is sample-wise screening: The initial 
classification error using all the 220 metabolite profile over 9 cancer classes is ~0.5, which is 
unacceptable. Some samples may contain higher than average noise level which will consequently 
deteriorate the follow-up correlation analysis. We evaluated the quality of each cancer class by 
comparing step-wise classification errors from Metabolomics and Gene microarray data. The best 
classifiers are selected at each step using a backwards elimination method based on random forest. 
At each step, the cancer class contributes most to the classification error was removed. Both the 
O.O.B. error rate from Random Forest and 10-fold cross validation error rate from Support Vector 
Machine (SVM) were investigated. The process was repeated 20 times and the mean error rate at 
each step is plotted in figure 1. Cancer cell line classes: Breast(B), CNS(S), Colon(C), Leukemia(L), 
Melanoma(M), Non-Small(N), Cell(C), Lung(L) Ovarian(O), Prostate(P), Renal(R). 

From Figure 1.a we can see that classification error rate decreases while we remove the most mis-
classified samples, which is expected. It should be noted that when removed five most misclassified 
cancer classes, for both Random Forest and Support Vector Machine, the combined best classifiers 
from gene expression and metabolite profile outperform either one alone. This do suggests that 
Metabolomics data capture significant amount of information from the cell despite the fact that they 
are more noisy and heterogeneous; after cleaning and processing, Metabolomics classifiers can 
achieve comparable classification performance with microarray. We chose five cancer classes 
(removed P,B,O,S) for correlation analysis, where the O.O.D error of Random Forest is around 0.1 
and the largest classification error for cancer class is smaller than 0.3. 

Sample Feature Comparison: We compared the structures of classification by super-imposing the 
2D projection of Euclidian distance calculated on the best classifiers from Metabolomics and 
Microarray data respectively , transformed by 2-D Multi-dimensional scaling, as shown in figure 2. 
Notably, both the 2-D projections over five cancer classes have reasonable separation, and visually 
one profile can be rotated and approximately super-imposed on the other. The significance of such a 
match using Procrustes analysis assessed by Protest procedure over 1000 permutations give a p-
value of 0.01. This suggests not only Metabolomics data can achieve equivalent classification 
performance as microarray, but also the cryptic structural information in both datasets resemble each 
other. This provides a theoretical basis for correlation analysis between Metabolomics and 
Microarray profiles.       
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Robust Estimate of Correlations: Because of 1. Gene-metabolite correlation is worse than 
Gene-Gene correlation 2. Out Metabolomics dataset is not complete 3. Outliers, the classical 
Pearson, Spearman and Kendal correlation fail. We applied robust pair-wise correlation 
estimates, such as FMCD and pairwiseQK to tackle the ‘contamination’ of outliers in the data. In 
addition, we computed first-order robust partial correlation by recursive formula on all the Gene 
to Metabolite/(Gene/Metabolite) combinations to improve estimation of significant direct Gene to 
Metabolite correlations. We also performed Liquid-Association on all the Gene-Gene/Metabolite 
combinations to search for metabolite expression fluctuations that may significantly alter Gene to 
Gene expression correlations. In each case, the p-value is estimated by 5000 permutations. All 
the permutations were done on Depression Center Cluster. Figure 3 shows an example of robust 
correlation estimates. The left demonstrate s the correlation of Guanine to RNMT, which is 
ranked top on MCD robust estimate of correlations. The right one demonstrates cholesterol v.s. 
HMOX2, a gene documented to have involvement in cholesterol biosynthesis.  Further analysis 
are proposed to combine literature mining with the short lists of significant Gene to Metabolite 
correlations for validation and inferences. 

Summary and Conclusions: Based on our preliminary analysis, we produced a shortlist of 
best Metabolomics classifiers which can achieve equivalent performance to those from 
microarray, and the combined classifiers outperform either set of classifiers alone under some 
conditions. Furthermore, by implementing robust correlation estimates, we successfully 
circumvented the issue of missing values, noise and outliers and identified significant 
correlations which can be validated from literature. The direct relationships from partial 
correlation and subtle controlling relationships from liquid association can also reveal multi-fold of 
hidden knowledge in addition to direct correlation estimation. It would also be interesting to 
integrate proteomics and epi-genetics data to construct a association network structure to help 
us better understand the panoramic picture underlying ‘omics’.    
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