

Introduction

Time point (TP) An Day4 TP Day8_TP Day16_TP Common in 3 time p Two_classPaired_3 MiMI identification of C8orf33 Shown are 144 genes (nodes) ar Methods GPRASP1 Labelled C8orf33 🔶 cRNA HAP1 Probe Address 29b 50b

Lithium (Li) is one of the most efficacious treatments for Bipolar Disorder (BD). Recent research on the genetics of BD has implicated genes affiliated with cell signaling and ion channels (CACNA1C, ANK3, and DGKH). Lithium is known to interact with and inhibit GSK3b and IMPases to modulate the wnt and phosphoinositol signaling pathways. However, much remains unknown with regards to the downstream gene expression changes affected by the regulation of these pathways. We cultured Lymphoblastoid Cell Lines (LCL's) from the whole blood of 10 subjects diagnosed with BD. These cells were divided into 2 groups (one group bathed in Lithium at clinically relevant concentrations and the other group bathed in saline) and evaluated for gene expression changes over 16 days. On days 4, 8, and 16 respectively, we investigated for changes in genome-wide expression profiles.

We utilised the Illumina Ref8 V2 platform which included 22184 probes to search for changes in genetic transcription. Image analysis and data normalization was accomplished with BeadStudio and Lumi software. SAM (Serial Analysis of Microarrays) was employed to identify significant genes and to estimate the FDR. MiMI (Michigan Molecular Interactions, NCIBI) was employed to identify the gene interaction networks. EASE (Expression Analysis Systematic Explorer) was employed for GO term enrichment analysis.

Lithium Induced Regulation of Genetic Transcription in **Bipolar Lymphoblastoid Cell Lines**

Haiming Chen1, Alan Prossin1, Nulang Wang2, Margit Burmeister1,2, and Melvin McInnis1 1 Department of Psychiatry, University of Michigan, Ann Arbor, MI, 2 Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI

These data outline the lithium induction of hundreds of genes (FDR < 5%) from Bipolar lymphoblastoid cell lines. This provides further evidence in support of a genetic hypothesis in the explanation of lithium's mechanism of action. MiMI has been useful in identifying the gene interaction networks involved with those genes whose expression was induced by lithium exposure.

	Results						
alysis	#genes (FDR <5%)	enes (FDR <5%) Up Dow		own	Oposite Dir		
	2789	1559	1	230		—	
	892 314			578		_	
	1577	478	1	099		_	
noints	4 3 7			28		8	
TP (slope change)	218			217			
in (orope onlange)							
3 gene interaction network.	EASE functional analysis of the	e 144 genes (no	odes) in t	he C8orf.	33 networ	Χ.	
nd 345 interactions (edges).	Shown are the GO terms result	ing from the E	ASE ana	lysis.	Ponulation		
	System Gene Category		List Hits List	Total Population H	its Total	EASE score	Bonferroni_P
	GO_TERM_BP GO:0019932~second-messenger-mediated signaling		20	95	204 8550) 4.85E-13	4.75E-10
	GO_TERM_BP GO:0007186~G-protein coupled receptor protein signa	ling pathway	33	95	792 8550) 2.32E-11	2.27E-08
R	GO_TERM_BP GO:0007242~intracellular signaling cascade		35	95	945 8550) 1.08E-10	1.05E-07
0.0	GO_TERM_BP GO:0007187~G-protein signaling, coupled to cydic nud	eotide second messenger	14	95	108 8550) 1.29E-10	1.26E-07
0	GO_TERM_BP GO:0019935~cydic-nudeotide-mediated signaling		14	95	111 8550) 1.83E-10	1.79E-07
	GO_TERM_BP GO:0007166~cell surface receptor linked signal transdu	ction	39	95 12	296 8550) 2.23E-09	2.18E-06
	GO_TERM_BP GO:0007165~signal transduction		55	95 25	523 8550) 1.36E-08	1.33E-05
	GO_TERM_BP GO:0007154~œll communication		57	95 27	797 855) 6.99E-08	6.83E-05
00 00 0	GO_TERM_BP GO:0007188~G-protein signaling, coupled to cAMP nu	deotide second	10	95	75 8550) 1.10E-07	1.08E-04
	GO_TERM_BP GO:0019933~cAMP-mediated signaling		10	95	77 8550) 1.39E-07	1.36E-04
	GO_TERM_BP GO:0007217~tachykinin signaling pathway		4	95	6 855) 2.51E-05	2.46E-02
A A 2	GO_TERM_BP GO:0007193~G-protein signaling, adenylate cydase inh	nibiting pathway	5	95	17 855) 2.92E-05	2.86E-02
ALAA S	GO_TERM_BP GO:0007213~acetylcholine receptor signaling, muscarin	ic pathway	4	95	7 8550) 4.36E-05	4.27E-02
THE P	GO_TERM_MF GO:0042277~peptide binding		17	96	131 8854	4.28E-13	4.19E-10
HAR K S	GO_TERM_MF GO:0001653~peptide receptor activity		14	96	88 8854	4 6.69E-12	6.54E-09
ALA A	GO_TERM_MF GO:0004930~G-protein coupled receptor activity		27	96	629 8854	1.16E-09	1.13E-06
HAZZ - A	GO_TERM_MF GO:0060089~molecular transducer activity		41	96 16	651 8854	1 9.33E-08	9.13E-05
HARA	GO_TERM_MF GO:0004871~signal transducer activity		41	96 16	651 8854	9.33E-08	9.13E-05
W K K K K K K K K K K K K K K K K K K K	GO_TERM_MF GO:0008227~amine receptor activity		8	96	39 8854	1.52E-07	1.49E-04
	GO_TERM_MF GO:0001584~rhodopsin-like receptor activity		22	96	549 8854	1 2.42E-07	2.37E-04
	GO_TERM_MF GO:0004888~transmembrane receptor activity		29	96	977 8854	4 6.78E-07	6.63E-04
X V V P	GO_TERM_MF GO:0004872~receptor activity		33	96 13	8854	4 3.04E-06	2.97E-03
XVVX	GO_TERM_MF GO:0042165~neurotransmitter binding		8	96	80 8854	1 2.20E-05	2.15E-02
XIIIXX	GO_TERM_MF GO:0004985~opioid receptor activity		4	96	6 8854	1 2.34E-05	2.29E-02
A AND	KEGG_Pathway hsa04080:Neuroactive ligand-receptor interaction		26	57	222 3366	6 7.38E-16	7.22E-13
FFF Kar	KEGG_Pathway hsa04020:Caldium signaling pathway		18	57	171 3366	6 7.90E-10	7.73E-07
000000	KEGG_Pathway hsa04810:Regulation of actin cytoskeleton		13	57	183 3360	6 3.16E-05	3.09E-02

Conclusions

Support NIMH (MH064596) to Haiming Chen Stanley Medical Research Institute to Haiming Chen Rachel Upjohn Clinical Scholars Award (2007) to Haiming Chen NIMH grant to Melvin G. McInnis

