
Enabling GPU Computing in the R Statistical Environment

Abstract

R is the most popular open source statistical environment in the biomedical
research community. However, most of the popular R function implementations
involve no parallelism and they can only be executed as separate instances on
multicore or cluster hardware for large data-parallel analysis tasks. The arrival
of modern graphic processing units (GPUs) with user friendly programming
tools, such as nVidia's CUDA toolkit (http://www.nvidia.com/cuda), provides a
possibility of increasing the computational efficiency of many common tasks by
more than one order of magnitude (http://gpgpu.org/). However, most R users
are not trained to program a GPU, a key obstacle for the widespread adoption of
GPUs in biomedical research. To overcome this obstacle, we decided to devote
efforts for moving frequently used R functions in our work to the GPU using
CUDA. In the ideal solution, if a CUDA compatible GPU and driver is present on
a user's machine, the user may only need to prefix "gpu" to the original function
name to take advantage of the GPU implementation of the corresponding R
function. We take achieving this ideal as one of our primary goals so that any
biomedical researcher can harness the computational power of a GPU using a
familiar tool. Since our code is open source, researchers may customize the R
interfaces to their particular needs. In addition, because CUDA uses shared
libraries and unobtrusive extensions to the C programming language, any
experienced C programmer can easily customize the underlying code.

Implementation

Using the CUDA extension to C and the shared linear algebra library CUBLAS,
we have implemented a variety of statistical analysis functions with R interfaces
that execute with different degrees of parallelism on a Graphics Processing Unit
(GPU). If an algorithm is comprised of common vector or matrix operations
each performed once, we involve the GPU by implementing those operations
with calls to CUBLAS. If an algorithm involves computing the elements of a
large matrix, we can often merely assign each thread executing on the GPU a
portion of a row and/or column. Algorithms for which we have implemented
GPU enabled versions include the calculations of distances between sets of
points (R dist function), hierarchical clustering (R hclust function). Pearson and
Kendall correlation coefficients (similar to R cor function), and the Granger test
(granger.test in the R MSBVAR package).

Results

Figure 1 illustrates performance comparisons between four thread data parallel
solutions using traditional R functions a on Intel Core i7 920 and our GPU
enabled R functions using a GTX 295 GPU. The trials consisted of testing each
of three algorithms with five randomly generated data sets. The Granger
causality algorithm was tested with a lag of 2 for 200, 400, 600, 800, and 1000
random variables with 10 observations each. Euclidean distance and complete
hierarchical clustering was tested with 1000, 2000, 4000, 6000, and 8000
points. Kendall's correlation coefficient was tested with 20, 30, 40, 50, and 60
random variables with 10000 observations each.

Figure 2 illustrates a performance comparison between a function similar to the
'granger.test' from the package 'MSBVAR' and our gpuGranger function. We use
a 4 threads on Intel Core i7 920 versus a GTX 295 GPU.

Figure 3 illustrates a performance comparison between the R function 'hclust'
composed with 'dist' and our gpuDistHclust function. We use 4 threads on Intel
Core i7 920 versus a GTX 295 GPU. Euclidean distance and complete
hierarchical clustering was tested with 1000, 2000, 4000, 6000, and 8000 points
where each point has 5000 components.

Figure 4 illustrates a performance comparison between the function 'cor' and our
gpuCor function with 'method' set to 'kendall'. We use 4 threads on Intel Core i7
920 versus a GTX 295 GPU. Calculation of Kendall's correlation coefficient was
tested with 20, 30, 40, 50, and 60 random variables with 10000 observations
each.

Acknowledgements

Acknowledgements: J. Buckner, M. Dai, F. Meng, and S. J. Watson are
members of the Pritzker Neuropsychiatric Disorders Research Consortium,
which is supported by the Pritzker Neuropsychiatric Disorders Research Fund
L.L.C. This work is also partly supported by the National Center for Integrated
Biomedical Informatics through NIH grant 1U54DA021519-01A1 to the
University of Michigan.

Project website: http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu Software available at http://cran.r-project.org/web/packages/gputools/index.html

Josh Buckner1, Manhong Dai1, Brian Athey1,2, Stanley Watson1 and Fan Meng1,2
1Molecular & Behavioral Neuroscience Institute and Psychiatry Department

2National Center for Integrative Biomedical Informatics
University of Michigan, Ann Arbor, MI 48109, US

