

ConceptGen: A Gene Set Enrichment and Concept Mapping Tool

Vasudeva Mahavisno, Zach Wright, Alla Karnovsky, Gilbert S. Omenn, Brian Athey, James Cavalcoli, and Maureen A. Sartor National Center for Integrative Biomedical Informatics, University of Michigan; Ann Arbor, MI

Abstract

Identification of biological concepts enriched in an experimentally-derived gene list has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources. We will present for the first time ConceptGen, a gene set enrichment and concept mapping tool that integrates gene sets from 14 biological knowledge sources totaling ~ 18,000 concepts and provides a user friendly web interface. The experimentally-derived concepts include several hundred from public microarray datasets downloaded from Gene Expression Omnibus (GEO), which we analyzed using a custom-built gene expression analysis pipeline incorporating advanced statistical methods and quality control checks. Additional concept types include Gene Ontologies, pathway databases, protein domain families, miRNA target sets, drug target sets, genecentered protein interaction sets, MeSH-derived concepts, and metabolite-specific gene sets created using published human metabolic networks that link compounds and reactions to enzymes and genes. ConceptGen can easily be expanded to include experimental data from other technologies, such as ChIP-Seq, RNA-Seq, or high-throughput metabolomics and proteomics.

Using a modified Fisher's Exact Test, we pre-computed the significance of overlap among all concepts, and developed a state-of-the-art user interface with Flex technology. Visualizations include a network and heat-map view of significantly enriched concepts. Users are provided with private accounts for uploading gene or metabolomic datasets. We demonstrate the usefulness of ConceptGen using a bipolar disorder case study.

Introduction

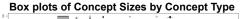
A Fisher's exact test modified to increase stability is perform

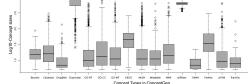
increase stability is performed for each biological grouping (concept)					ConceptGen	Oncomine concept mapping	DAVID/ EASE
	# signif	# not signif		Freely-available?	Yes	Very limited	Yes
# in category	A - 1	в		Performs concept mapping?	Yes	Yes	No
# not in	с	D		Contains experimental microarray data?	Yes	Limited to cancer	No
category	•			Uses modified Fisher's Exact for stability?	Yes	No	Yes
Hypergeometric Distribution:				Private account ?	Yes	Yes, but not free version	No
(A-1+B)(C+D)(A-1+C)(B+D)				Heatmap view of network?	Yes	No	No
				Metabolite, MeSH, or MiMI protein interactions?	Yes	No	No

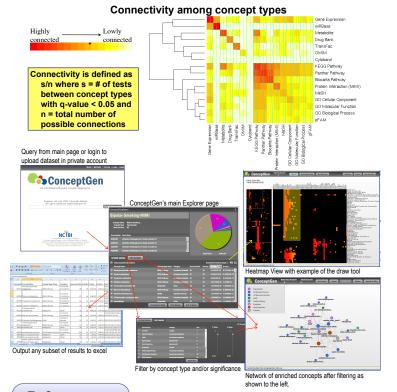
Concept Building

Biological Knowledge types represented in ConceptGen

Biological Knowledge Type	Concept Type(s) Name	# of Concepts	Source	
Biological processes	GO biological process	1043	Gene Ontology	
Molecular functions	GO molecular function	660	Gene Ontology	
Cellular components	GO cellular component	292	Gene Ontology	
Protein-centered interactions	Protein Interaction (MiMI)	7050	NCIBI database	
Medical Literature Derived	MeSH (using Gene2MeSH)	4028	NCIBI database	
Human Diseases	OMIM	52	NCBI	
Drug Targets	Drug Bank	256	Drug Bank	
Chromosomal location	Cytoband	1178	NCBI	
Molecular Pathways	KEGG pathway; Panther pathway; Biocarta pathway	50	KEGG; Panther; Biocarta	
Transcription Factor targets	Transfac	119	Transfac	
Protein families	pFAM	770	pFAM	
microRNA targets	MIRBase	587	MIRBase	
Metabolic interactions	Metabolite	960	NCIBI database	
Differential expression profiles	Gene Expression	603	Custom-built analysis pipeline for GEO data	


Expression data analysis pipeline


Protocol:


- 1. Affymetrix raw data downloaded directly from NCBI GEO repository
- 2. Probes mapped to Entrez Gene IDs using custom CDF (Dai, et al., 2005)
- 3. Data is normalized with RMA, quality control checked, and comparisons set up through pipeline interface
- 4. Differential expression is tested using an empirical Bayes method (Sartor, et al., 2006)
- 5. Up, Down, and differentially expressed concepts are created using genes with fold > 20% and p-value < 0.05

Results

References

- 1. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. 2005. Evolving gene/transcript definitions significantly alter the
- Darm, Hong T, Edych, Noser O, Anne D, Joshe S, Jose E, Jose Har 2005, Tetra T. 20
- 4. Sartor MA, et al. 2006. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMCBioinformatics 7(1): 538.

Acknowledgements

This work was supported by National Institutes of Health: Grant #U54 DA021519

