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Abstract BN Expansion using BN+1

Signaling and regulatory pathways that guide gene expression have only been partially defined for most organisms. Our BN+1 expansion analysis resulted in identification of known and predicted genes important for ROS

However, given the increasing number of microarray measurements, it may be possible to reconstruct such pathways and stress responses.
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generalized approach applicable to the study of other biological pathways and living systems.
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Data Preprocessing: A compilation dataset comprising 305 gene expression microarray observations and 4,217 genes from Escherichia
coli MG1655 was obtained from the M3D database (1). A coefficient of variation threshold (c.v. =2 1.0) was used to select 4,205 genes for
analysis. Twenty-seven genes were identified from the EcoCyc ROS detoxification pathway (downloaded on March 26, 2008) and matched
to unique features found in the 305 available gene expression microarray chips. Expression profiles for each gene were discretized using
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Resu Its existing pathways. In this study, genes selected for inclusion in the ROS pathway showed clear biological relevance to ROS in all
three models, supporting the premise that the network expansion approach employed in this study are valid. The BN+1 algorithm
Consensus Network Analysis recovered genes (e.g. gadX and uspE) that would be very difficult to identify using methods such as clustering and Pearson

correlation. Overall, the consensus network and BN+1 approach is a generalized method that is applicable to the investigation of

We created a novel B-value as a cutoff to select the number of networks for inclusion in consensus network generation. Stricter , T e
various biological pathways in living systems.

consensus networks (medium and small networks) defined by decreased B-values better match the known pathways in EcoCyc,
RegulonDB, and literature than looser networks (Fig. 2).
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