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Agenda 
• Background / Motivations 
• Research code and sustainable software 
• Habits: 

• Version control 
•  Testing 
• Pairing 
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Background / motivations 
• About me 

•  20 yrs in IT; 15 years in Software Engineering 
•  2007 Compendia (Oncomine) 
•  2012 UM Bioinformatics Core 

• What the core does 
• What I do 

•  IT 
•  Bioinformatics projects 
•  Software engineering 
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Research code and sustainable software 
are often distinct 

Research code Sustainable software 
Optimized for Enabling discovery Managing complexity 
Interaction Informal; Interactive 

exploration 
Structured use cases 

Operational knowledge Implicit (authors) Explicit (code and doc) 
Target users Authors; Subject Experts General practitioners 
Lifecycle Short; 

mostly development 
Long;  
mostly maintenance 
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Heroux (2009), Wilson (2014) 



Operational profiles create distinct niches 
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Research code and sustainable software 
share many values 

Research code Sustainable software 
Reproducibility Robustness 

Portability 
Reusability 

Early publication Time to market 
Correctness 

Simplicity 
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I. Version control is a lab notebook for files 
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You use version control now 
floss 
stop cursing 
lose weight 

floss 
stop cursing 
lose weight 
exercise more 
cut out sugar 

floss 1x a day 
limit cursing in front on kids 
lose 10 pounds by April 15 
exercise 2x a week 
cut out desserts after lunch 
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But using a file system as version control 
is problematic 

• Which is the most current file? 
• What is the order of revisions? 

•  What version did I use on December 23? 

• Why was the file changed on Jan 1, 2016? 
•  Who made that change? 
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Version control using Git 
floss 
stop cursing 
lose weight 
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resolutions.txt 

floss 
stop cursing 
lose weight 
exercise more 
cut out sugar 

resolutions.txt 

floss 1x a day 
limit cursing in front on kids 
lose 10 pounds by April 15 
exercise 2x a week 
cut out desserts after lunch 

resolutions.txt 

“commit” 



Version control using Git 

• Which is the most current file? (resolutions.txt) 
• What is the order of revisions? (as above) 

•  What version did I use on December 23? (made goals objective) 

• Why was the file changed on 1/1/2016? (“more realistic”) 
•  Who made that change? (cgates) 
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Benefits of Git and GitHub 
• Git 

•  Provenance and history 
•  Simpler/cleaner 
•  Backup 

• Github (Hosted version control) 
•  Free for public projects 
•  Better backup 
•  Collaboration 

•  Sharing 
•  Publishing 
•  Cooperative development 
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Chacon (Pro Git), Wilson (2014),    



Version Control: Threats to adoption 
• Big files 

•  Don’t version control things you don’t edit by hand 

• Privacy 
•  Github/Bitbucket – cheap private accounts 
•  Private hosting is easy for basic projects 
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II. Testing 
• Code and fix (ad hoc testing) 

•  Traditional (waterfall) software development lifecycle 

• Unit testing (Automated, iterative testing) 
 

•  Test-driven development (TDD) 
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Analyze Design Develop Test Release Maintain 

Dev Test D T D T 

T D T D T D 
Beck (1999), Beck (2003) 

Develop          Test 

Either 
is great 



TDD Example: Roman Numerals  

I è 1 
II è 2 
V è 5 
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Testing influences your design 
16 

Classifier-Plotter 

Classifier Plotter 

Beck (2003), Sandve (2013) 

Hard to test 

Easier to test More modular 



Benefits of automated unit testing 
•  Improves correctness during development 
• Encourages re-use 
• Passing tests quantify progress 
• Reduces regressions over time 
•  Typically correlates with higher quality than “code and fix” 
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BfxCore projects Unit tests 
AmpliconSoftClipper 71 
Epee 717 
Jacquard 537 
Nephroseq 8315 
Zither 53 

Beck (2003), Makinen (2014), Nagappan (2008), Rafique (2013)  



Testing: Threats to adoption 
• Stochastic algorithms harder (use/allow seeding) 
• Big data slower (use small data) 
• UI hard to test (separate data and presentation) 
• Benefit smaller on simpler problems 
• Startup cost 
•  Testing doesn’t guarantee correct behavior  

(thanks, Volkswagen!) 
• Need a good problem model 
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III. Pair-programming 
Two people, one keyboard 
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Beck (1999), Cockburn (2000), Williams (2000), Williams (2002)   



Economics of pairing 
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Project 1 

Project 2 

Ted (dev) 

 Amanda (dev) 

Parallel development (conventional) 

3 months * 2 dev = 6 dev months 

Project 1 
Ted 
Amanda 

Project 2 

If development were about typing, you would expect: 

6 months * 2 dev = 12 dev months 

Project 1 
Ted 
Amanda 

Project 2 

But in actuality, developing is more about problem solving: 

3.3 months * 2 dev = 6.6 dev months 



Benefits of pairing 

•  (120% effort) 
•  Shared understanding 
•  Homogenous code 
•  Early publication 
•  Simpler management 
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Project 1 
Ted 
Amanda 

Project 2 

Actual results 

Beck (1999), Cockburn (2000), Williams (2000), Williams (2002)   



Pairing at BfxCore 
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Projects 
AmpliconSoftClipper 
CRIDA 
Epee 
Jacquard 
Nephroseq 
Zither 
(others) 



Pair-programming: threats to adoption 
•  Logistics 
• Mentorship 
• Culture of individual ownership 
•  Furniture 
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Habits can benefit both research code 
and sustainable software   

Habit    
Value 

Version control Testing Pairing 

Reproducibility ✔ ✔ ✔ 
Correctness ✔ ✔ 
Publication ✔ ✔ 
Simplicity ✔ ✔ ✔ 
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•  Habits don’t make good decisions; they just make bad decisions more painful. 

•  Note that adoption of any habit (including good habit) reduces efficiency at the outset.  

•  Wilson (2014): Science is more than a body of knowledge – it’s a way of doing things that 
enables and encourages collaboration. 



• Bioinformatics core 

• Ana Grant 
• Bob Boguski 
• Divya Kriti 
• Pete Ulintz 
•  Jessica Bene 
• Kevin Meng 
• Ross Patterson 

 

Thanks and questions 
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