
Three habits to bridge
research code and
sustainable software
January 21, 2016

Chris Gates (cgates@umich.edu)
UM Bioinformatic Core
DCMB Masters student

Agenda
• Background / Motivations
• Research code and sustainable software
• Habits:

• Version control
•  Testing
• Pairing

2

Background / motivations
• About me

•  20 yrs in IT; 15 years in Software Engineering
•  2007 Compendia (Oncomine)
•  2012 UM Bioinformatics Core

• What the core does
• What I do

•  IT
•  Bioinformatics projects
•  Software engineering

3

Research code and sustainable software
are often distinct

Research code Sustainable software
Optimized for Enabling discovery Managing complexity
Interaction Informal; Interactive

exploration
Structured use cases

Operational knowledge Implicit (authors) Explicit (code and doc)
Target users Authors; Subject Experts General practitioners
Lifecycle Short;

mostly development
Long;
mostly maintenance

4

Heroux (2009), Wilson (2014)

Operational profiles create distinct niches

5

Target “users”
(# users + maintainers + environments)

Li
fe

cy
cl

e
(#

 e
xe

cu
tio

ns
)

1

4

16

64

1 2 4 8

Research code and sustainable software
share many values

Research code Sustainable software
Reproducibility Robustness

Portability
Reusability

Early publication Time to market
Correctness

Simplicity

6

I. Version control is a lab notebook for files

7

You use version control now
floss
stop cursing
lose weight

floss
stop cursing
lose weight
exercise more
cut out sugar

floss 1x a day
limit cursing in front on kids
lose 10 pounds by April 15
exercise 2x a week
cut out desserts after lunch

8

But using a file system as version control
is problematic

• Which is the most current file?
• What is the order of revisions?

•  What version did I use on December 23?

• Why was the file changed on Jan 1, 2016?
•  Who made that change?

9

Version control using Git
floss
stop cursing
lose weight

10

resolutions.txt

floss
stop cursing
lose weight
exercise more
cut out sugar

resolutions.txt

floss 1x a day
limit cursing in front on kids
lose 10 pounds by April 15
exercise 2x a week
cut out desserts after lunch

resolutions.txt

“commit”

Version control using Git

• Which is the most current file? (resolutions.txt)
• What is the order of revisions? (as above)

•  What version did I use on December 23? (made goals objective)

• Why was the file changed on 1/1/2016? (“more realistic”)
•  Who made that change? (cgates)

11

Benefits of Git and GitHub
• Git

•  Provenance and history
•  Simpler/cleaner
•  Backup

• Github (Hosted version control)
•  Free for public projects
•  Better backup
•  Collaboration

•  Sharing
•  Publishing
•  Cooperative development

12

Chacon (Pro Git), Wilson (2014),

Version Control: Threats to adoption
• Big files

•  Don’t version control things you don’t edit by hand

• Privacy
•  Github/Bitbucket – cheap private accounts
•  Private hosting is easy for basic projects

13

II. Testing
• Code and fix (ad hoc testing)

•  Traditional (waterfall) software development lifecycle

• Unit testing (Automated, iterative testing)

•  Test-driven development (TDD)

14

Analyze Design Develop Test Release Maintain

Dev Test D T D T

T D T D T D
Beck (1999), Beck (2003)

Develop Test

Either
is great

TDD Example: Roman Numerals

I è 1
II è 2
V è 5

15

Testing influences your design
16

Classifier-Plotter

Classifier Plotter

Beck (2003), Sandve (2013)

Hard to test

Easier to test More modular

Benefits of automated unit testing
•  Improves correctness during development
• Encourages re-use
• Passing tests quantify progress
• Reduces regressions over time
•  Typically correlates with higher quality than “code and fix”

17

BfxCore projects Unit tests
AmpliconSoftClipper 71
Epee 717
Jacquard 537
Nephroseq 8315
Zither 53

Beck (2003), Makinen (2014), Nagappan (2008), Rafique (2013)

Testing: Threats to adoption
• Stochastic algorithms harder (use/allow seeding)
• Big data slower (use small data)
• UI hard to test (separate data and presentation)
• Benefit smaller on simpler problems
• Startup cost
•  Testing doesn’t guarantee correct behavior

(thanks, Volkswagen!)
• Need a good problem model

18

III. Pair-programming
Two people, one keyboard

19

Beck (1999), Cockburn (2000), Williams (2000), Williams (2002)

Economics of pairing
20

Project 1

Project 2

Ted (dev)

 Amanda (dev)

Parallel development (conventional)

3 months * 2 dev = 6 dev months

Project 1
Ted
Amanda

Project 2

If development were about typing, you would expect:

6 months * 2 dev = 12 dev months

Project 1
Ted
Amanda

Project 2

But in actuality, developing is more about problem solving:

3.3 months * 2 dev = 6.6 dev months

Benefits of pairing

•  (120% effort)
•  Shared understanding
•  Homogenous code
•  Early publication
•  Simpler management

21

Project 1
Ted
Amanda

Project 2

Actual results

Beck (1999), Cockburn (2000), Williams (2000), Williams (2002)

Pairing at BfxCore

22

Projects
AmpliconSoftClipper
CRIDA
Epee
Jacquard
Nephroseq
Zither
(others)

Pair-programming: threats to adoption
•  Logistics
• Mentorship
• Culture of individual ownership
•  Furniture

23

Habits can benefit both research code
and sustainable software

Habit
Value

Version control Testing Pairing

Reproducibility ✔ ✔ ✔
Correctness ✔ ✔
Publication ✔ ✔
Simplicity ✔ ✔ ✔

24

•  Habits don’t make good decisions; they just make bad decisions more painful.

•  Note that adoption of any habit (including good habit) reduces efficiency at the outset.

•  Wilson (2014): Science is more than a body of knowledge – it’s a way of doing things that
enables and encourages collaboration.

• Bioinformatics core

• Ana Grant
• Bob Boguski
• Divya Kriti
• Pete Ulintz
•  Jessica Bene
• Kevin Meng
• Ross Patterson

Thanks and questions

25

References (1)
• UM BIOINF575
• UM EECS398
• Software carpentry: http://software-carpentry.org/
• Software Sustainability Institute:

http://www.software.ac.uk/
• Chacon: Pro Git: https://git-scm.com/book/en/v2
• Gentzkow, Shapiro: Code and Data for the Social

Sciences: A Practitioner’s Guide:
http://www.brown.edu/Research/Shapiro/pdfs/
CodeAndData.pdf

26

References (2)
•  Beck K, Extreme programming explained: embrace change, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999

•  Beck, K.: Test-Driven Development: By Example. Addison-Wesley (2003)

•  Cockburn A, Williams L. The costs and benefits of pair programming. Extreme programming examined, pages 223–247, 2000.

•  Heroux MA, Willenbring JM. Barely sufficient software engineering: 10 practices to improve your cse software. In Software Engineering for
Computational Science and Engineering, 2009. SECSE ’09. ICSE Workshop on, pages 15–21, May 2009.

•  Loman N, Watson M. So you want to be a computational biologist? Nat Biotechnol. 2013;31: 996–998. doi: 10.1038/nbt.2740. pmid:
24213777

•  Mäkinen S, Münch J. "Effects of Test-Driven Development : A Comparative Analysis of Empirical Studies" in Software Quality. Model-Based
Approaches for Advanced Software and Systems Engineering : 6th International Conference, SWQD 2014, Vienna, Austria, January 14-16,
2014. Proceedings , pp. 155-169 Lecture Notes in Business Information Processing , vol. 166 . , 10.1007/978-3-319-03602-1_10

•  Nagappan N, et al. Realizing quality improvement through test driven development: results and experiences of four industrial teams
•  Empirical Softw. Eng., 13 (June 2008), pp. 289–302

•  Noble WS. A quick guide to organizing computational biology projects. PLoS Computational Biology. 2009 Jul;5(7):e1000424 doi: 10.1371/
journal.pcbi.1000424. pmid:19649301

•  Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, Dalchau N, et al. Ten Simple Rules for Effective Computational Research.
PLoS Comput Biol. 2014;10: e1003506 doi: 10.1371/journal.pcbi.1003506. pmid:24675742

•  Rafique Y, Misic VB. The Effects of Test-Driven Development on External Quality and Productivity: A Meta-Analysis, IEEE Transactions on
Software Engineering, v.39 n.6, p.835-856, June 2013 [doi>10.1109/TSE.2012.28]

•  Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational Research. PLoS Comput Biol.
2013;9:e1003285. doi: 10.1371/journal.pcbi.1003285. pmid:24204232

•  Williams L, et al. Strengthening the Case for Pair Programming, IEEE Software, v.17 n.4, p.19-25, July 2000 [doi>10.1109/52.854064]

•  Williams L, Kessler R. Pair Programming Illuminated, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2002

•  Wilson et al. Best Practices for Scientific Computing. 2014 PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

27

